
Journal of Pure and Applied Algebra 38 (1985) 103-109 

North-Holland 

103 

COMMUTATIVE RINGS, ALGEBRAIC TOPOLOGY, GRADED 

LIE ALGEBRAS AND THE WORK OF Jan-Erik ROOS 

David J. ANICK 

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA 

Stephen HALPERIN 

Department of Mathematics, Universly of Toronto, Toronto, Ontario, M5S IA1 Canada 

Communicated by C. Lafwall 

Received 15 June 1985 

Dedicated to Jan-Erik Roos on his 50-th birthday 

The classic book, Homological Algebra, by Cartan and Eilenberg begins in the 

following way: 

‘During the last decade the methods of algebraic topology have invaded extensive- 

ly the domain of pure algebra . . . The invasion has occurred on three fronts through 

the construction of cohomology theories for groups, Lie algebras and associative 

algebras . . . We present here a single cohomology (and also a homology) theory 

which embodies all three.’ 

A few lines later the authors mention Hilbert’s syzygy theorem as an application; 

this is one instance of the usefulness of these methods when applied to the study of 

commutative rings. 

A central role in Homological Algebra is played by the functors Tor and Ext. Ap- 

plied to a ring homomorphism R + k (k a field) they give a graded k-vector space 

Tor$(k, k) whose graded dual Ei = Ext,*(k, k) is, equipped with the Yoneda product, 

a graded algebra. 

With the introduction of differential homological algebra by Eilenberg and 

Moore [14] the functor Tor was extended to differential graded algebras (DGA’s). 

They showed, in particular, that for the cochain algebra C* of a pointed 

l-connected CW complex of finite type: Torc*(k, k) =H*(QX; k), QX being the 

loop space of X. Dualizing gives a graded algebra E3 k = H&2X; k), with multi- 

plication induced from composition of loops. 

The parallel between Ez and ETk is even clearer when (on the topological side) 

we restrict to k = Q. (Thus we write EC= EsQ ). Indeed, Milnor and Moore [31] 

showed that E:! is the universal enveloping algebra UL$ of a canonical graded Lie 
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algebra L$. Their work (for char k = 0) together with Andre [l] (char k> 2) and 

Sjodin [39] (char k = 2) establishes that if R is a commutative noetherian local ring, 

then Ei is also the universal enveloping algebra of a canonical graded Lie algebra 

L& Henceforth we shall restrict ourselves to commutative rings R. 

A third ‘level’ of technique was provided by Quillen’s homotopical algebra in 

1967. Applied by him [32] and subsequently by Sullivan [40] it gave a homotopy 

theory for graded commutative DGA’s over Q which was equivalent to rational 

homotopy theory for topological spaces. In particular, Quillen showed that every 

rational graded Lie algebra L = @k,O Lk (dim Lk finite, each k) was of the form 

L = L$ for suitable l-connected X (of finite type). 

Now this is very definitely not true if Xis required to be finite, and the analogous 

assertion for local commutative noetherian rings (each L * has the form L,*) is equal- 

ly not true. In fact these two classes of graded Lie algebras turn out to behave in 

a remarkably similar way, and this fact was recognized even in the 1950’s and early 

1960’s with the following question of Serre and Kaplansky (cf. [38]): 

Problem 1. If R is a local commutative noetherian ring with residue field k, and if 

X is a finite l-connected CW complex, do the series 

E&Z) = c dim[Extk(k, k)]z’ and Ex(z) = c [dim Hi (s2X;Q)]z’ 
I I 

always represent rational functions of z? 

More recently, this has been ‘generalized’ to the following fundamental question: 

Problem 2. What are the properties of the graded Lie algebras of the form L = Ls 

or Lf (R, X as in Problem l)? What are the properties of the algebras Eg, EC? In 

particular, what can one say about the series LR(z), Lx(z), E&) and Ex(z)? 

On the topological side the first significant contribution was made by Lemaire 

[26] in the early seventies, starting from a suggestion of Moore. He considered CW 

complexes obtained from a finite bouquet of spheres VS”a by attaching finitely 

many cells ena+’ via an attaching map f: VS*g-+ VS”~. (A recent result of Y. Felix 

and J.C. Thomas [17] shows these are exactly the finite l-connected CW complexes 
whose rational Lusternik-Schnirelmann category is two). Although Problem 1 was 

not resolved, Lemaire did construct such a complex X for which E$was not a finite- 

ly generated algebra. 

By the early 1970’s substantial effort had been directed towards Problem 1 on the 

algebra side. An important step was taken with Levin’s theorem [27] that if 

I? = R/d (m the maximal ideal, k sufficiently large), then ER(z)-’ - E~(z)-l was 

indeed a rational function, so that Problem 1 was reduced to that of rings satisfying 

mk = 0, some k. 

This, then, was the context in which in 1975 Jan-Erik Roos began a research pro- 
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gram on the homological properties of local rings, with specific focus on those 

whose maximal ideal, m, satisfied m3 =O. (This was the first non-trivial case for 

Problem 1.) This program, actively pursued by Roos and his students, and others, 

has had significant implications in three separate directions; namely 

(i) The discovery that (in addition to technique) the two fields - local rings and 

homotopy theory - shared a common body of non-trivial theorems for which one 

could sometimes give a single proof. 

(ii) The essential role which graded Lie algebras play in both subjects. 

(iii) The remarkable properties of the class of local rings R with m3 = 0. 

It is interesting to note how developments (i) and (ii) were foreshadowed by Car- 

tan and Eilenberg. 

The development (i) can be traced directly to ROOS’ paper [34] (which reports 

work done in 1975-76) in which he showed that Problem 1 (for rings with m3 = 0 

and residue field Q) and Problem 1 (for CW complexes of dimension four) were 

equivalent. Thus when in 1979 Anick [3] settled Problem 1 for CW complexes by 

constructing an example with Ex(z) irrational his space produced a local ring R 

with m3 = 0 and such that ER(z) was irrational as well. 

Nor even in its inception was the method limited to questions of series. In fact, 

Roos applied it to Lemaire’s example (mentioned earlier) to get a local ring R (with 

m3 = 0) whose Ext-algebra was not finitely generated. 

This idea of transferring theorems, rather than just techniques, between topology 

and algebra has really been extraordinarily fruitful, and particularly so in the at- 

tacks on Problem 2. Thus Avramov [6] was able to transfer from topology a 

theorem of Felix-Halperin-Thomas [15]. This asserts that for (possibly infinite) X 

of finite Lusternik-Schnirelmann category, either L$is finite-dimensional or else the 

numbers C:=,dim E;’ grow exponentially in II. Avramov’s theorem (of which a 

special case is due, independently to Felix-Thomas [16]) is that if R is a local 

noetherian ring, then either R is a complete intersection or the numbers dim(E$) 

grow exponentially in n. 

In the other direction a theorem of Avramov and Levin [28] described the algebra 

Eg when R had the form S/Z with S artinian Gorenstein and Z the socle. (When S 

was a complete intersection the Poincare series of S/Z had been obtained earlier by 

Gulliksen [20].) This theorem was transferred to topology (for formal manifolds by 

Avramov [6], in general by Halperin and Lemaire [21]) where it describes the 

algebra E$when X is the (n - I)-skeleton of a closed n-manifold. This transfer has 

a non trivial further application: it is used in [22] to prove that a circle cannot act 

freely on a finite connected sum of Lie groups (of rank 12). 

There are many examples now of this phenomenon (some in this issue) and a 

general account is available in [6] and [8]. 

The explicit role of graded Lie algebras (development (ii)) is already clearly pre- 

sent in the theses of Lemaire [26] and Lofwall [29]. In fact, if X arises from an at- 

taching map f: VS”l:- VS”~, then one can identify W,(Qf; Q) as a homomor- 

phism between finitely generated tensor algebras T(W) --t T(V), and the quotient 
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algebra A = T( V)/<EZ,(Qf; Q)( IV)> is the universal enveloping algebra of a finitely 

presented graded Lie algebra. What Lemaire shows is that (a) all such A’s arise in 

this way and (b) the series A(z) is rationally related to Ex(z). 

Analogously, Lofwall considers the subalgebra A C Ei generated by Ek and ob- 

tains a rational relation between the series A(z) and ER(z) when R satisfies m3,= 0. 

This was also obtained (in a different way) by Roos in [34]. 

For such R, moreover, A is also the universal enveloping algebra of a finitely 

presented graded Lie algebra, but now with generators in degree 1 and relations in 

degree 2. In [34] Roos shows that all such A’s occur in this way (this is also implicit 

in [29]) and coi’ncide exactly with the A’s of Lemaire in the case of four-dimensional 

complexes. This is, of course, a key step in his theorem. 

It also meant that in order to construct rings R (m3 = 0) with E&,) irrational it 

was sufficient to construct such a (l-2) presented Lie algebra L for which the series 

UL(z) was irrational. In [30] Lofwall and Roos give a new technique (i.e. different 

from that of Anick) for such a construction, thus providing a second way of making 

a counter example for Problem 1. Their construction depends exclusively on calcula- 

tions with, and properties of the cohomology of graded Lie algebras. 

In the last five years the recognition of the role played in this subject by graded 

Lie algebras, their enveloping algebras and more general graded associative algebras 

has (cf. [2], [21], [23], . ..) resulted in work directly in these domains. In particular, 

there is Bogvad’s beautiful theorem [12] that if L is a finitely generated graded Lie 

algebra of global dimension 2 (over an algebraically closed field), then an element 

in the centre of L is either a generator or the square of a generator. 

The third development, the study of ER(z) for rings with m3 = 0, might have been 

expected to die with Anick’s counter-example. After all, it did appear that the 

primary interest of the restriction m3 = 0 was precisely that it was the simplest place 

one might hope for such an example. 

In fact, an enormous wealth of examples and variety of behaviour have now been 

exhibited by the study of this class of rings. There is (for instance) the result of 

Froberg, Gulliksen and Lofwall [19] which provides a flat family of local artinian 

algebras with an infinite number of series ER(z). Analogously, in topology, Anick 

[4] and Avramov [7] construct finite l-connected CW complexes X in dimension 

four with non-trivial p torsion (all primes p) in H*(QX;Z). 

But the most remarkable development is contained in the article of Anick and 

Gulliksen in this issue [5]. Building on the earlier work of Roos (and Lemaire, 

Lofwall, . . . ) and on results of Jacobsson [25] (also in this issue) they show that the 

series E,(z) for any local noetherian S is rationally related to a series ER(z) for 

some local noetherian R with m3= 0. Moreover, the series Ex(z) (X a finite 

l-connected CW complex) are all rationally related to these series (and conversely) 

and to the series arising from X of dimension four. 

Now once the question of rationality was settled negatively, the question arose 

whether there was some other easily described countable set of series containing this 

one. This was answered positively by Jacobsson and Stoltenberg-Hansen who 
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proved [24] that all series E&) are primitive recursive. 

The problem of the behaviour of the series E&) has also been studied by con- 

centrating on other classes of rings. Thus Froberg [ 181 began the study of rings with 

monomial relations, and Backelin [lo] the study of Golod attached rings. In [9] 

Backelin shows that for rings with monomial relations ER(z) is rational, and then 

Backelin and Roos prove [ 1 l] the very surprising fact that for such rings the algebra 

ExtExt,Ck, kj(k, k) is noetherian. 

There is, as might be expected, considerable work on Problem 2, old, new or still 

in progress which has not been mentioned. We should, however, indicate Roos’ in- 

terest in coherence [33], and in A-dimension and finitistic global dimension. In [36] 

and [37], he establishes results which suggest that these may be very useful invariants 

in the future. 

The influence of Jan-Erik Roos on this entire area has been significant. Backelin, 

Bogvad, Froberg, Jacobsson and Lofwall are in fact colleagues, and all of these but 

Froberg were his students. His ideas have had a considerable impact with many 

others, including those of us (Anick, Avramov, Gulliksen, Halperin, Lemaire, 

Levin... ) who have spent time working with him in Stockholm. 

Not least among his contributions was the realization that one group of 

mathematicians in topology, and another in algebra, were working at subjects with 

so much in common that a profitable scientific collaboration was possible. The 

energy and initiative which he has shown in realizing this idea (culminating with his 

conference in 1983 on Algebra, Algebraic Topology and their Interaction) have 

resulted in active joint research efforts by members of these two groups. 

The substantial benefit to the subject (and its researchers) of this collective effort 

is indicated by the articles in the proceedings of that conference and in this special 

issue. 

References 

[l] M. Andre, Hopf algebras with divided powers, J. Algebra 18 (1971) 19-50. 

[2] D. Anick, Non-commutative graded algebras and their Hilbert series, J. Algebra 78 (1982) 120-140. 

[3] D. Anick, A counterexample to a conjecture of Serre, Ann. of Math. 115 (1982) l-33. 

[4] D. Anick, A loop space whose homology has torsion of all orders, Pacific J. Math., to appear. 

[5] D. Anick and T. Gulliksen, Rational dependence among Hilbert and Poincare series. J. Pure Appl. 

Algebra, In this volume. 

[6] L. Avramov, Local algebra and rational homotopy, in: Homotopie Algebrique et Algebre Locale, 

Asterisque 113-114 (1984) 15-43. 

[7] L. Avramov, Torsion in loop space homology, Topology, to appear. 

[S] L. Avramov and S. Halperin, Through the looking glass; a dictionary between rational homotopy 

theory and local algebra, J.-E. Roos, ed., in: Algebra, Algebraic Topology and their Interaction, 

Lecture Notes in Math. (Springer, Berlin, to appear). 

[9] J. Backelin, Les anneaux locaux a relations monomiales ont des series de Poincare-Betti rationneles, 

C.R. Acad. Sci. Paris 295 (1982) Serie I, 607-610. 

[lo] J. Backelin, Golod attached rings with few relations I, II, Dept. of Math., Univ. of Stockholm, 

Reports 1982-14 and 1982-20. 



108 D. Anick, S. Halperin 

[I 1] J. Backelin and J.-E. Roos, On the Ext-Ext-Algebra of monomial ideal residue class ring, in: J.-E. 

Roos, ed., Algebra, Algebraic Topology and their Interaction Lecture Notes in Math. (Springer, 

Berlin, to appear). 

[12] R. Bogvad, Some elementary results on the cohomology of graded Lie algebras, in: Homotopie 

Algebrique et Algebre Locale, Asterisque 113-l 14 (1984) 156-166. 

[13] H. Cartan and S. Eilenberg, Homological Algebra (Princeton Univ. Press, Princeton, NJ, 1956). 

[14] S. Eilenberg and J.C. Moore, Homology and fibrations I, Comm. Math. Helv. 40 (1966) 199-236. 

[15] Y. Felix, S. Halperin and J.C. Thomas, The homotopy Lie algebra for finite complexes, Publ. 

Math. IHES 56 (1982) 179-202. 

[16] Y. Felix and J.C. Thomas, The radius of convergence of Poincare series of loop spaces, Invent. 

Math. 68 (1982) 257-274. 

[17] Y. Felix and J.C. Thomas, Characterization of spaces whose rational L.S. category is two, Illinois 

J. Math., to appear. 

[18] R. Froberg, Determination of a class of Poincare series, Math. Stand. 37 (1975) 29-39. 

[19] R. Froberg, T.H. Gulliksen, and C. Lofwall, Flat families of local artinian algebras with an infinite 

number of Poincare series in: J.-E. Roos, ed., Algebra, Algebraic Topology and their Interaction, 

Lecture Notes in Math. (Springer, Berlin, to appear). 

[20] T.H. Gulliksen, Massey operations and the Poincare series of certain local rings, J. Algebra 22 

(1972) 223-232. 

[21] S. Halperin and J.-M. Lemaire, Suites inertes dans les algtbres de Lie graduees, Preprint. 

[22] S. Halperin, Rational homotopy and torus actions, in: Aspects of Topology, London Math. Sot. 

Lecture Notes 93 (1985) 293-306. 

[23] C. Jacobsson, The Yoneda Ext algebra of a local ring, Uppsala University, Dept. of Math., Report 

1983: 2. 

[24] C. Jacobsson and V. Stoltenberg-Hansen, Poincare-Betti series are primitive recursive, J. London 

Math. Sot. (2), 31 (1985) l-9. 

[25] C. Jacobsson, Finitely presented graded Lie algebras and homomorphisms of local rings, J. Pure 

Appl. Algebra, in this volume. 

[26] J.-M. Lemaire, Algebres Connexes et Homologie des Espaces de Lacets, Lecture Notes in Math. 

422 (Springer, Berlin, 1974). 

[27] G. Levin, Local rings and Golod homomorphismes, J. Algebra 37 (1975) 266-289. 

[28] G. Levin and L.L. Avramov, Factoring out the socle of a local Gorenstein ring, J. Algebra 55 (1978) 

74-83. 

(291 C. Lofwall, On the subalgebra generated by the one-dimensional elements of the Yoneda Ext- 

algebra, in: J.-E. Roos, ed., Algebra, Algebraic Topology, and their Interaction, Lecture Notes in 

Math. (Springer, Berlin, to appear). 

[30] C. Lofwall et J.-E. Roos, Cohomologie des algebres de Lie graduees et series de Poincare-Betti non 

rationnelles, C.R. Acad. Sci. Paris 290 (1980) SCrie A, 733-736. 

[31] J.W. Milnor and J.C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965) 21 l-264. 

[32] D. Quillen, Rational homotopy theory, Ann. of Math. 90 (1969) 205-295. 

1331 J.-E. Roos, Sur I’algebre Ext de Yoneda d’un anneau local de Golod, C.R. Acad. Sci. Paris 286 

(1978) Serie A, 9-12. 

[34] J.-E. Roos, Relations between the Poincare-Betti series of loop spaces and local rings, in: M.-P. 

Malliavin, ed., Seminaire d’algebre Paul Dubreil, Proc. 1977-78, Lecture Notes in Math. 740 

(Springer, Berlin, 1979) 285-322. 

[35] J.-E. Roos, Homology of loop spaces and of local rings, in: Proc. 18th Scandinavian Congress of 

Mathematics, 1980; Progress in Mathematics 11 (Birkhauser, Basel, 1981) 441-468. 

[36] J.-E. Roos, On the use of graded Lie algebras in the theory of local rings, in: R.Y. Sharp, ed., Com- 

mutative Algebra: Durham 1981, London Math. Sot. Lecture Notes 72 (Cambridge Univ, Press, 

Cambridge, 1982) 204-230. 

[37] J.-E. Roos, Finiteness conditions in commutative algebra and solution of a problem of Vasconcelos, 



Algebru and the work of Jan-Erik Roos 109 

in: R.Y. Sharp, ed., Commutative Algebra: Durham 1981, London Math. Sot. Lecture Notes 72 

(Cambridge Univ. Press, Cambridge, 1982) 179-203. 

[38] J.P. Serre, Algebre Locale, Multiplicites, Lecture Notes in Math. I1 (3e edition), (Springer, Berlin, 

1975). 

[39] G. Sjodin, Hopf algebras and derivations, J. Algebra 64 (1980) 218-229. 

[40] D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES 47 (1978) 269-331. 


